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Abstract

This paper reports a detailed study of modal reduction based on either linear normal mode (LNM) analysis or

proper orthogonal decomposition (POD) for modeling a single a-D-glucopyranose monomer as well as a chain of

monomers attached to a moving atomic force microscope (AFM) under harmonic excitations. Also a modal reduction

method combining POD and component modal synthesis is developed. The accuracy and efficiency of these methods

are reported. The focus of this study is to determine to what extent these methods can reduce the time and cost of

molecular modeling and simultaneously provide the required accuracy. It has been demonstrated that a linear

reduced order model is valid for small amplitude excitation and low frequency excitation. It is found that a nonlinear

reduced order model based on POD modes provides a good approximation even for large excitation while the nonlin-

ear reduced order model using linear eigenmodes as the basis vectors is less effective for modeling molecules with a

strong nonlinearity. The reduced order model based on component modal synthesis using POD modes for each com-

ponent also gives a good approximation. With the reduction in the dimension of the system using these methods the

computational time and cost can be reduced significantly.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Modal reduction; Biological molecules; Linear normal mode; Proper orthogonal decomposition; Component modal
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1. Introduction

Biomolecular motions involve a large number of atoms and take place over a great range of time and

length scales. Moreover, because of the existence of high frequency motions, the usual time step in a
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molecular dynamics simulation is around 10�15 s. These characteristics make a numerical molecular dynamic

simulation a computationally intensive task. There is a clear need to reduce the cost of the computation. So

far several schemes have been developed to accomplish this goal. One way is to reduce the time and cost for

the evaluation of non-bonded forces, electrostatics forces and van der Waals forces. Since van der Waals

interactions are short ranged, their calculation can be restricted to neighboring pairs. For electrostatic forces
several algorithms have been proposed such as Ewald summation [1], particle–particle/particle mesh (PPPM)

method [2] and fast multipole algorithms (FMAs) [3]. Also in the widely used computer code, CHARMM [4],

a cut-off is used to exclude from the force calculation those atom pairs with a distance greater than the cut-off

distance. Another approach being used is to make full use of high performance software techniques. Several

computer programs such as NAMD [5] and EGO [6] are designed to run simulations on parallel computers.

An alternative approach is modal reduction as presented in this paper. The premise that motivates mod-

al reduction is that complex systems can have a relatively simple dynamic behavior which only depends on a

relatively small number of essential variables. The challenge for constructing low-dimensional models for
complex physical systems is the choice of basis vectors. Various basis vectors for the subspace have been

proposed.

As far as linear systems are concerned, the most common method is linear normal mode (LNM) or

eigenmode analysis. Modal reduction is well established for linear dynamic systems since the linear systems

have the property of superposition.

By contrast, modal reduction for nonlinear systems is much more complicated. Generally linear normal

modes are no longer invariant manifolds in nonlinear vibration systems. However, it is valid to simulate

small fluctuations by assuming the potential energy is harmonic in the neighborhood of equilibrium states
(conformations) based on linear normal modes. The interested reader is referred to [7] for a discussion of

existing methods. For the basic methodology used in biological systems, see Ref. [8]. It is known that the

reduced order models for nonlinear systems that are based on the linear eigenmode space can give quali-

tatively wrong results due to the contamination from the non-modeled modes. More specifically, it has been

observed that projecting nonlinear equations onto linear eigenmodes predicts incorrect hardening and soft-

ening regions of the potential energy. See [9] and the references therein for examples. To overcome this

problem, several invariant manifolds such as center manifolds [10], inertial manifolds and nonlinear normal

modes (NNMs)[11] have been proposed. But these approaches are still under development and have been
primarily used for low-dimensional or relatively simple systems [12–15]. For complex and high-dimensional

systems these methods are often computationally intractable. Another method that has received attention

recently is the proper orthogonal decomposition method (POD) also known as the Karhunen–Loeve (K–L)

method or principal modal analysis (PCA).

The POD method is a procedure for extracting the essential information from a set of data obtained in

experiments or numerical simulations, thus providing a optimal basis for modal reduction. For a physical

interpretation of POD modes (POM), see [16–18] for detailed discussions. It has been proven that POM are

actually the linear modes of vibration for linear symmetric undamped free-vibration systems with an iden-
tity mass matrix [16]. In addition to being optimal in a least square sense, the POD method has the advan-

tage that POM are completely data dependent and do not need any prior knowledge of the system. Hence,

this procedure is powerful in generating low-dimensional models for complex systems described by a high-

dimensional discrete system or a continuous system. Compared with other nonlinear invariant manifold

reduction methods, POD modes are much easier to compute. Because of these properties the POD method

is widely used in various fields such as data analysis, image processing, and modal reduction. One of the

earliest applications of POD may be traced back to turbulence modeling by Lumey in 1967 [19]. Now

POD is emerging as a useful tool in structural dynamics and time-dependent fluid dynamics. It has been
used to build reduced order models in a variety of contexts [20–23].

The application of modal analysis to molecular dynamics first appeared in the early 1980s. In [24], the

author shows that multiple minima exist in proteins and the harmonic approximation of the potential
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energy is in question. Paradoxically, in [25] it is proven that the very low-frequency normal modes make the

major contributions to the conformational fluctuations at thermal equilibrium and the author argued that

this fact justifies the use of variables of very-low-frequency normal modes to describe significant conforma-

tional dynamics of proteins. The use of traditional normal modes is still under study today. Moreover,

modal analysis of a biopolymer is still interesting since it does provide physical insight in some cases. As
an alternative to traditional normal modal analysis, POD has been introduced in molecular dynamics.

In different publications in the literature, it carries different names: collective coordinates, quasi-harmonic

analysis, principal component analysis. In [26], the authors applied both normal modal analysis and prin-

cipal component analysis to the dynamics of BPTI and the results show that the first principal component

makes an overwhelmingly large contribution to the total mean-square fluctuation and represents the tran-

sitions between minima. For more examples, see references [27–31]. The results of these papers support the

use of modal reduction in computational biology.

However, so far in molecular dynamics most reduced order models using normal modes or POD are as-
sumed to be linear around the static equilibrium state or conformation. The study of a nonlinear reduced

order model is rarely considered. In this paper, normal modes and POD modes are used to construct linear

and nonlinear reduced order models for a a-D-glucopyranose monomer to determine if modal reduction can

provide a good approximation to the original system and can improve the efficiency of computation in

molecular dynamics. This is a continuation of our previous studies that were mainly on linear models [32].

In addition, a reduced order model based on POD and component modal synthesis (CMS) is also con-

structed. As is well known, component modal synthesis can be advantageous in modeling large systems.

For biological molecules, the dimension of the system is very high. The calculation of POM for the entire
system is very expensive since the correlation matrix is so big. And also the accuracy may be in doubt when

solving a large eigenvalue problem. Thus, CMS is introduced here. To demonstrate the utility of this meth-

od, the simulation of a ten-monomer amylose chain is carried out.
2. Methods

The chemical formula of a-D-glucopyranose is C6H12O6. It includes 24 atoms and has a six-member ring
structure with one side-group. The semi-empirical potential energy method is used in the simulation. To

date several kinds of potential functions have been proposed for this method such as the Amber force field

and the CHARMM force field. Each field has been improved several times. For example, the earliest ver-

sion of the CHARMM force field has been improved in 1988 [33], in 1995 and in 2001 [34]. In this paper,

the latest version is used.

2.1. Nonlinear dynamic equations of motion

The schematic diagram of a a-D-glucopyranose chain with an atomic force microscope (AFM) attached

is shown in Fig. 1.

The potential energy of the molecule has the following form:
V T ¼
X
bonds

kbðb� b0Þ2 þ
X
angles

khðh� h0Þ2 þ
X

torsions

k/½1þ cosðn/� dÞ� þ
X
i<j

Aij

r12ij
� Bij

r6ij
þ Kcoul

eiej
�rij

 !
;

ð1Þ

where the values of b0 are the equilibrium bond lengths, those of h0 are the equilibrium bond angles, n is a

periodicity number, d is a phase factor, rij is the distance between atom i and atom j, qi and qj are atomic

partial charges and kb, kh, k/ and Kcoul are the force parameters.



Fig. 1. Schematic diagram for stretching of the molecule by an AFM.
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Assume the AFM is attached to atom k and moves along the z-direction. Given the expression for the

potential energy and the virtual work in Lagrange�s equations for the system, the equations of motion are as

follows:
mi€ri þriðV TÞ ¼ 0; i ¼ 1; 2; . . . ;N ; and i 6¼ k;

mk€zk þ oV T

ozk
� ksðBðtÞ þ zs � zkÞ ¼ 0;

(
ð2Þ
where N is the total number of atoms, mi and mk are the masses of atom i and atom k, B(t) is the excitation

displacement prescribed for the AFM base, the vector ri is the position vector of atom i as
ri ¼ xi~iþ yi~jþ zi~k
and ks is the stiffness of the AFM.

Let {x} = {x1,y1,z1,x2,y2,z2, . . .,xk�1,yk�1,zk�1,xk+1,yk+1,zk+1, . . .,xN,yN,zN}
T. Then the matrix form

of Eq. (2) is expressed as,
½M �f€xg � fF Ng þ fF eg ¼ fksBðtÞdði� kÞg; ð3Þ

where [M] is a diagonal matrix of the atomic mass, {Fe} is the force due to the AFM and takes the form of

{Fe} = {ks(zk � zs)d(i � k)}, where zs is the position of the tip of the AFM at force free state and d is a Delta

function, for example, d(i � k) = 0 when i 6¼ k and d(i � k) = 1 when i = k. And {FN} is the force due to

atom interactions and is given as
fi ¼ � oV T

oxi
; i ¼ 1; 2; . . . ;NN ; ð4Þ
where NN is the total number of degrees of freedom.

For the present model, a viscous damping force, {fviscous}, is added to Eq. (3) that is assumed to be of the

form
f i;viscous ¼ 2nmix1 _ri;
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where x1 is the fundamental natural frequency. The basic modal damping ratio is taken to be n = 0.1 in the

simulations. The damping matrix is approximately expressed as
½C� ¼ 2nx1½M �.

Finally, a compact matrix equation to determine {x} can be expressed as,
½M �f€xg þ ½C�f _xg � fF Ng þ fF eg ¼ fksBðtÞdði� kÞg. ð5Þ
2.2. Linear perturbation equations

Based on the nonlinear dynamic equations of motion, a linearized equation for small fluctuations around
the static equilibrium position or conformation is considered. Let
fxg ¼ fxsg þ fx̂g; ð6Þ

where {xs} is the static equilibrium positions and fx̂g is a small dynamic fluctuation.

The static equilibrium position, {xs}, is determined by
fF Ng ¼ 0
and also the AFM is force free at this state.

Substituting Eq. (6) into Eq. (5) and using a Taylor Series, the linear dynamic perturbation equations for

the small motions about the static equilibrium positions are given by
½M �f€̂xg þ ½C�f _̂xg þ ½K�fx̂g ¼ fksBðtÞdði� kÞg; ð7Þ

where [K] is a Jacobian matrix about the static equilibrium positions, and the linearized stiffness element Kij

is given by
Kij ¼ �ofi
oxj

����
xs

þ ksdði� ð3k � 2ÞÞdðj� ð3k � 2ÞÞ ¼ oV T

oxioxj

����
xs

þ ksdði� ð3k � 2ÞÞdðj� ð3k � 2ÞÞ.
For detailed information about the stiffness matrix, Kij, in the Jacobian matrix, see Appendix A in [32].

2.3. Linear normal modes-based reduced order modeling

2.3.1. LNM-based linear reduced order model

Define the reduced modal coordinates as a vector {q}. The transformation between fx̂g and {q} is given

as
fx̂g ¼ ½U�fqg; ð8Þ

where [U] is a matrix with eigenvectors as columns and satisfies
½U�T½M �½U� ¼ ½I �

and
½U�T½K�½U� ¼ diagðx2
i Þ ¼ ½x2�;
where x2
i are eigenvalues of stiffness matrix [K] and mass matrix [M] in increasing order.

Substituting Eq. (8) into Eq. (7), the reduced linear perturbation model is
f€qg þ ½R�f _qg þ ½x2�fqg ¼ ½U�TfksBðtÞdði� kÞg; ð9Þ

where
½R� ¼ ½U�T½C�½U� ¼ 2nx1½I �.



A. Li, E.H. Dowell / Journal of Computational Physics 211 (2006) 262–288 267
As described in [23,35,36], a quasi-static correction for the linear reduced order model may provide a

very effective method to reduce the number of modes that need to be retained for a given level of accuracy.

To that end, let
fx̂g ¼ fx̂Qsg þ f^̂xg; ð10Þ

where x̂Qs is the quasi-static correction (QSC) and ^̂x is an additional small dynamic response. The quasi-static

response is defined to be that when the inertia terms, €̂x and damping terms, _̂x, are neglected. From Eqs. (7)

and (10), thus we have
fx̂Qsg ¼ ½K��1fksBðtÞdði� kÞg ð11Þ

and
½M �f€̂x̂g þ ½C�f _̂x̂g þ ½K�f^̂xg ¼ �½M �f€̂xQsg � ½C�f _̂xQsg. ð12Þ

Using the same procedure as before, the linear reduced order dynamic model with a quasi-static correction

is given as
f€qg þ ½R�f _qg þ ½x2�fqg ¼ �fFg; ð13Þ

where fFg is a linear force vector that depends upon the quasi-static response of x̂Qs.

2.3.2. LNM-based nonlinear reduced order model without quasi-static correction (QSC)

The construction of nonlinear reduced order model is similar to the procedure for linear reduced order

model. The solution has the same form of Eqs. (6) and (8), but x̂ is not necessarily small in nonlinear re-

duced order model.

Substituting Eqs. (6) and (8) into Eq. (5), nonlinear ROM without QSC is expressed by
f€qg þ ½R�f _qg � ½U�TfF Ng þ ½U�TfF eg ¼ ½U�TfksBðtÞdði� kÞg. ð14Þ
2.3.3. LNM-based nonlinear reduced order model with QSC

Let
fxg ¼ fxlinearg þ fDxg; ð15Þ

where xlinear is the linearized static and dynamic response obtained from the linear reduced order model

with a quasi-static correction (Eq. (13)). The definition of {xlinear} is
fxlinearg � fxsg þ fx̂Qsg þ f^̂xg;

where fxsg; fx̂Qsg and f^̂xg are the static equilibrium position, the quasi-static response and small dynamic

response in the linearized system. However, note that {Dx} is not necessarily small.

Substituting Eq. (15) into Eq. (5) and using Eqs. (11), (12), one obtains a nonlinear equation in matrix

form
½M �fD€xg þ ½C�fD _xg þ fDF eg � fF Ng ¼ fF linearg; ð16Þ

where {DFe} = {ksDxd(i � k)} and the linearized force matrix, {Flinear}, is defined by
fF linearg ¼ ½K�fðx̂Qs þ ^̂xÞg � fF esg

where {Fes} = {ks(xlinear � xs)d(i � k)}.

Let
fDxg ¼ ½U�fag; ð17Þ
f^̂xg ¼ ½U�fqg. ð18Þ
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Then the corresponding nonlinear reduced order model with the linearized quasi-static correction is given

by
f€ag þ ½R�f _ag þ ½U�TfDF eg � ½U�TfF Ng ¼ ½U�TfF linearg. ð19Þ

Once {a}, fx̂Qsg and {q} are determined from Eqs. (19), (11) and (13), {x} can be determined from Eq.

(15). Note that when performing the time integration of Eq. (19), one must calculate Eq. (15) at each time

step and then determine the nonlinear force vector, {FN}.

2.4. Proper orthogonal decomposition modes-based reduced order modeling

From a numerical simulation using Eq. (5), the time histories of the coordinates which determine the

positions of all atoms are saved. Then these data are placed in a data matrix Q as
Q½ �NN�J ¼

x1ð1Þ . . . x1ðjÞ . . . x1ðJÞ
..
. ..

. ..
. ..

. ..
.

xið1Þ . . . xiðjÞ . . . xiðJÞ
..
. ..

. ..
. ..

. ..
.

xNN ð1Þ . . . xNN ðjÞ . . . xNN ðJÞ

2
666666664

3
777777775
; i ¼ 1; 2; . . . ;NN ; j ¼ 1; 2 . . . ; J ; ð20Þ
where xi(j) is the jth snapshot of the ith atom motion, J is the number of the snapshots and NN is the num-

ber of total degrees of freedom of the molecular model.

There is a choice between computing the singular value decomposition of Q or QT for finding POM

which depends on the relative size of NN and J. In the field of Principal Component Analysis, the first

method is called the R-method and second the Q-method [37]. The modal vectors produced by the two

methods can be shown to differ by only a constant scaling matrix. In the present paper, the R-method is

selected since the number of degrees of the system is not very high. The R-method is described below.

The singular value decomposition of Q is given as
½Q� ¼ ½U �½R�½V �T ð21Þ

where U is a unitary matrix of dimension NN · n and V is also a unitary matrix of dimension J · n. One

may select n and typically n will be much less than J. Note that
½U �T½U � ¼ ½I �n�n; ½V �T½V � ¼ ½I �n�n ð22Þ

and R is a diagonal matrix of singular values, i.e.
R½ �n�n ¼

r1

r2

. .
.

rn

2
66664

3
77775; ð23Þ
where
r1 P r2 P � � � rn ð24Þ

and the correlation matrix U is constructed as
½U� � ½Q�½Q�T ¼ ½U �½R�T½V �T½V �½R�½U �T. ð25Þ

Substituting Eq. (22) into the above equation, we have
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½U� ¼ ½U �½R�T½R�½U �T ð26Þ

and U is the eigenvector of the matrix [U].

It is well known that the success of the POD methodology depends upon the choice of the excitation used

to obtain the snapshots. A certain amount of numerical experimentation may be required to determine an

effective excitation to calculate the snapshots.

2.4.1. POM-based reduced order models

The procedure of building POM-based ROM is the same as constructing LNM-based reduced order

models except for the transformation matrix between original coordinates, x̂, to POD modal coordinates,

{q}.

In this case, the transformation of the coordinates is given as
fx̂g ¼ ½U �½R�fqg. ð27Þ

Going through the same procedure as before, the governing equations for the reduced order models are

given below:

POM-based linear reduced order model without QSC
f€qg þ ½R�f _qg þ ½P �fqg ¼ ksBðtÞfW g; ð28Þ

where
½R� ¼ ð½R�T½R�Þ�1ð½U �½R�ÞT½M ��1½C�½U �½R� ¼ 2nx1½I �;
½P � ¼ ð½R�T½R�Þ�1ð½U �½R�ÞT½M ��1½K�ð½U �½R�Þ;
fW g ¼ ð½R�T½R�Þ�1ð½U �½R�ÞT½M ��1fdði� kÞg.
POM-based nonlinear reduced order model without QSC
f€qg þ ½R�f _qg � ½p�fF Ng þ ½p�fF eg ¼ ksBtW ; ð29Þ

where [R] and [W] are same as in Eq. (28) and
½p� ¼ ð½R�T½R�Þ�1ð½U �½R�ÞT½M ��1
.

2.5. Reduced order modeling using component modal synthesis (CMS)

Reduced order model can also be constructed by means of component modal synthesis using the POM

for each component. Assume that the structure in Fig. 1 is composed of m substructures, r = 1,2, . . .,m. For

substructure r, the displacement vector, {x}r, can be represented by a matrix with POM as columns mul-

tiplied by a Nr-dimensional time-dependent modal coordinate vector, {q}r,
fxgr ¼ fxsgr þ fx̂gr ¼ fxsgr þ ð½U �½R�Þrfqgr. ð30Þ

Define vectors
fxgd ¼ ffxgT1 ; fxg
T
2 ; . . . ; fxg

T
mg

T
;

fqgd ¼ ffqgT1 ; fqg
T
2 ; . . . ; fqg

T
mg

T

and matrices
½T � ¼ diagðð½U �½R�ÞrÞ; r ¼ 1; 2 . . . ;m;

½M �d ¼ ½T �Tdiagð½M �rÞ½T �; r ¼ 1; 2 . . . ;m;
where {q}d is the N-dimensional disjoint POD modal coordinator vector with N ¼
Pm

r¼1Nr.
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Assuming the substructures act independently of each other, the combined kinetic energy of the assem-

bled structure is
T ¼
Xm
r¼1

T r ¼
Xm
r¼1

1

2
f _xgTr ½M �rf _xgr ¼

1

2
f _qgTd ½M �df _qgd . ð31Þ
Similarly, the combined potential energy function is
V ¼
Xm
r¼1

V r; ð32Þ
where Vr is a function of {q}r.

However, in the assembled structure each substructure is subjected to forces exerted by other substruc-

tures. Thus the total potential energy is modified to
V ¼
Xm
r¼1

V r þ V inter; ð33Þ
where Vinter is the interaction energy between substructures and is a function of {q}d. Thus, the atoms at the

interface of each two substructures must satisfy some geometric compatibility conditions. For the structure

in Fig. 1, considering two neighboring substructures r and t, one must have
xj;r ¼ xj;t; ð34Þ

where j�s are the degrees of freedom associated with the atoms at the interface between the adjoint substruc-

tures. Suppose there are Nj such constraints to connect substructures. Then the entire system has only

n = N � Nj degrees of freedom. Let {q} be the n-dimensional vector of POM coordinates, {q} is related

to {q}d as
fqgd ¼ ½C�fqg; ð35Þ

where [C] is an N · n rectangular constraint matrix.

Insert Eq. (35) into Eqs. (31) and (33), and then the governing equations of motion in terms of {q} can be

obtained by Lagrange Equations. For a detailed description of component modal synthesis, see [38].
3. Results

In this section, simulations are made to demonstrate the accuracy of the modal reduction methods de-

scribed in Section 2. A simple biological system, one monomer of a-D-glucopyranose, is considered first in

Section 3.1–3.3. In this system, there are 24 atoms with 6 carbon atoms, 6 oxygen atoms and 12 hydrogen

atoms. Two of these atoms are fixed and one is attached to the tip of the AFM and only allowed to move in

one direction as shown in Fig. 1. Therefore, the number of degree of freedom is n = 21 · 3 + 1 = 64. In Sec-

tion 3.4, a ten monomer amylose is considered. The stiffness of the AFM cantilever is chosen to be
ks = 10 pN/Å. The force field parameters are obtained from Ref. [34]. In the simultions, the AFM base mo-

tion is prescribed along z-direction as
BðtÞ ¼ A sinð2pftÞ;

where A and f are the excitation amplitude and frequency, respectively.

3.1. Results from linear ROM

The static equilibrium state is the ‘‘chair-like’’ state shown in Fig. 2 obtained using the original nonlinear

equations. The eigenvalues and eigenvectors for this conformation are computed using the perturbation
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Fig. 2. Chair-like state of a single a-D-glucopyranose monomer. The symbol * denotes Hydrogen atoms and the symbol d is for

carbon or oxygen atoms.
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equation, Eq. (7), when the external excitation is removed and the damping is set to zero. The first 20 eigen-

values are shown in Table 1. All the eigenvalues are shown in Fig. 3.

It is obvious from Fig. 3 that there are jumps in the distribution of eigenvalues or natural frequencies.
This is probably because the monomer includes 12 hydrogen atoms which are significantly lighter than
Table 1

Eigenvalues, fi (THz)

f1–5 f6–10 f11–15 f16–20

1.46346e � 001 3.94122e + 000 1.02265e + 001 1.37841e + 001

1.04667e + 000 4.55072e + 000 1.14259e + 001 1.45702e + 001

1.77876e + 000 5.48644e + 000 1.23014e + 001 1.57309e + 001

2.91688e + 000 5.83528e + 000 1.24758e + 001 1.65451e + 001

3.04658e + 000 8.79735e + 000 1.29923e + 001 1.69857e + 001
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other atoms and the strength of the various bonds is quite different. Such jumps are common in molecular

spectra and the similar cases are also seen in other literature such as [39–41]. In [41], the authors stated that

the different frequency modes are associated with different bond stretching, angle bending and librations of

side chain groups.

Define the RMS magnitude of each atom as
Fig.
si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi;rmsÞ

2 þ ðyi;rmsÞ
2 þ ðzi;rmsÞ

2
q

. ð36Þ
Also in order to compare the results obtained from the ROM and the solution calculated by appplying a

time marching method to the original system described by Eq. (5), the total RMS error, err, is defined as
err ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðsi;Full � si;ROMÞ2

s2i;Full

vuut %; ð37Þ
where N is the total number of atoms in motion.

Fig. 4 shows the total rms error compared to the exact solution vs. the number of modes included in the

linear ROM with and without the QSC (Eqs. (9) and (13)) for A = 1 Å. The excitation frequency is

f = 100 GHz which is below the first natural frequency shown in Table 1. As expected, the total error de-

creases as the number of modes included in the linear ROM with or without the QSC increases. When the

number of modes included in the ROM is low, the result obtained from the linear model with the QSC is

generally much better than the result using the linear model without the QSC. For example, when using the

model without the QSC the total rms error is 21.2% while the total rms error is 0.1% with the QSC if only
one mode is included in both models. When the number of modes retained in ROM increases, the results

from the two linear models get closer and closer. Finally when the number of modes included in the ROM is

large enough, the difference between the results from both models is negligible. Therefore, QSC is important

in the simulation using reduced order models especially in the case with only a few modes included. Thus,

the dimension of the system can be further reduced with QSC.

Fig. 5 shows the total rms error vs. the number of modes included for different excitation amplitudes,

A = 10 Å and A = 30 Å, with the frequency of f = 100 GHz. The results in Fig. 5 have a similar trend as

for the case with A = 1 Å in Fig. 4.
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Fig. 5. Total RMS error vs. number of eigenmodes for different excitation amplitudes with f = 100 GHz, using the linear ROM with

and without QSC.
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To see to what extent the linear ROM can accurately represent the response of the system, different fre-

quency and different amplitude excitations are considered. The total rms error vs. the excitation amplitude

using fully linear models as described by Eq. (7) for an excitation frequency of 100 GHz is shown in Fig. 6.

As the excitation amplitude increases the total error increases when the excitation amplitude is lower than
A = 50 Å. Surprisingly the error begins to decrease beyond that. Actually when the excitation amplitude is

40 Å, the responses of atoms already have higher order harmonic components. For illustration, the time

histories of atom O5 in x-direction for different excitation amplitude are shown in Fig. 7. For comparison

the linear results for the excitation frequency of 2 THz are also shown in Fig. 6. It is obvious that at the

higher excitation frequency, the linear results are worse given the same excitation amplitude. Thus the re-

sults in Fig. 6 suggest that linear perturbation is only valid for small amplitude and low frequency

excitations.
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Fig. 6. Total RMS error vs. the excitation amplitude using the linear perturbation model.
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Fig. 7. Time histories of x-direction displacement of atom O5 for different excitation amplitudes and excitation frequency of

f = 100 GHz.
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3.2. Results from nonlinear ROM without QSC

In this section, a nonlinear reduced order model without QSC is investigated. Two sets of basis vectors

are used in the simulations. One is the eigenspace composed of linear normal modes (LNM) and the other is

the space spanned by POM. The LNM-based and POM-based nonlinear ROMs are described by Eqs. (14)
and (29), respectively. The computation of linear normal modes is straightforward. Assume the shape of

potential energy in the neighborhood of the equilibrium state is characterized by the Hessian matrix (stiff-

ness matrix) with respect to the Cartesian coordinates and then solve the standard eigenvalue problem. The

procedure for calculating POM is described in Section 2.4.

In this section, the snapshots are generated by first exciting the system by a sine-sweep with lower and

upper limit frequencies of xlow and xup given as
BðtÞ ¼ Asweep sin xlow þ ðxup � xlowÞt
2T

� �
t;
where T is the sweep period.

The data from the time history of the response is used to create the correlation matrix, Q. After Q is
generated, the POM are calculated as described in Section 2.4. The POM used in the simulations are ob-

tained from time simulations of Eq. (5) if not otherwise specified.

First, consider the case in which the excitation amplitude and frequency are A = 1 Å and f = 100 GHz,

respectively. In this case, we choose flow=0, and fup=2 (THz) and T = 20 ps.

The eigenvalues of the POD correlation matrix are shown in Fig. 8.

Fig. 9 shows the rms amplitude of each atom for different number of LNM or POM retained. For the

ROM based on LNM, the results obviously get closer to the exact solution when the number of modes in-

cluded increases from 1 to 5. But the results only show a slight difference when more than five modes are
included. Compared to the ROM based on LNM, POD yields a significantly better approximation. The

results from POD approach the exact solution quickly as the number of modes included increases. The total

rms error is 21.2% when 5 POM are included and is only 0.01% when 10 POM are included.

Fig. 10 shows the total rms error vs. the number of LNM or POM in the ROM. It is found the results

from the ROM based on LNM converge to the exact solution much more slowly than the results obtained

from the ROM with POM as the basis. For the LNM the results agree well with the exact solution when full
0 10 20 30 40 50 60 64
–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of POMs

P
O

D
 v

al
ue

s

Fig. 8. POD values vs. number of POD modes.



0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of atoms

R
m

s 
am

pl
itu

de
, A

ng
st

ro
m

Exact solution
1 LNM
5 LNMs
10 LNMs

a LinearEigenspace

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of atoms

R
m

s 
am

pl
itu

de
, A

ng
st

ro
m

Exact solution
1 POM
5 POMs
10 POMs

b POM space

Fig. 9. Rms amplitude of each atom for different number of modes included in ROM. A = 1 Å and f = 100 GHz.
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model is used and the error goes up significantly even though only few high frequency modes are truncated
in the ROM. This is probably because linear eigenmodes are no longer invariant manifolds. Reduced order

models based on LNM cannot capture the essential dynamics by simply truncating the high frequency

modes similar to the case discussed in [9].

When the excitation amplitude increases, the trend of the results from the ROM based on LNM or POM

appear similar to those for the case in which the excitation amplitude is 1 Å. For illustration, the total rms

vs. number of modes included in ROM for different excitation amplitudes is shown in Fig. 11. For large

amplitude excitation, the results obtained by the ROM with LNM as basis vectors converge extremely

slowly and the results are unacceptable even when only few modes are removed. On the contrary, POD
gives good results.

In summary, the nonlinear ROM based on LNM fails to give good results and the ROM based on POM

works much better for complex nonlinear systems and shows advantages over linear models.
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3.2.1. Discussion of the ROM with the basis of LNM

To understand why the ROM based on the LNM fails, Fig. 12 shows how the temporal mean of xi drifts

when using the ROM for A = 1 Å and A = 30 Å, respectively. Note however that the rms amplitudes of the

modal coordinates obtained from the full model shown in Fig. 13 do suggest that only a few low frequency

modes make an essential contribution to the response. Here the harmonic excitation frequency is 100 GHz.

The deviation is compared to the temporal mean for the exact solution. The deviation of the ROM mean is

defined as
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where Æ Æ æ denotes temporal mean and n is the number of DOF of the system.
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Fig. 13. Rms amplitude of LNM coordinates vs. number of modes. f = 100 GHz.
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The results in Fig. 12 clearly indicate that the ROM temporal mean shifts away from the exact temporal

mean as the number of modes decreases. When the excitation amplitude gets larger this shift is very dra-

matic (see Figs. 12(b) and 11(a)). This is probably due to the strong coupling between higher and lower

modes. Fig. 14 shows the phase portraits of some modal coordinates for the fully nonlinear model. The

initial equilibrium state corresponds to qi = 0 for all i. It is noted that the oscillations occur about the ori-

ginal static static state (conformation) for the lower modes, but the temporal mean of the oscillation shifts
substantially for the higher modes. Initially the system stays in one equilibrium state. However, once the

oscillation starts, the energy minima of the high-frequency modal coordinates are shifted because multiple

equilibrium states exist in a small region and the system reaches the well of the new equilibrium under the

action of external force.

In addition to the shifting of the oscillation center, another important factor is the stiffening due to modal

truncation. Fig. 15 shows the rms amplitude of modal coordinates obtained by the ROM with different

number of modes included. It is clearly shown that the rms amplitude of the first modal coordinate signif-

icantly decrease as the number of modes removed increases. For large amplitude excitation this effect is
more pronounced. The rms amplitudes of the first few coordinates in the ROM are smaller than the cor-

responding results in the full model.

In summary, the shifting of the oscillation center and the stiffening of the system provide an explanation

of why the ROM based on LNM gives a poor approximation of the response. This is similar to the case

discussed in [26].

3.2.2. Sensitivity study of POM

Recall that POM are data dependent. Fig. 16 shows the total rms error vs. number of modes included in
the ROM for different basis vectors. The results denoted by the dotted line with circles are obtained from

the ROM with the basis vectors of the POM calculated from time simulation of linear, small perturbation

equations (Eq. (7)). As expected the trend is similar to the ROM based on LNM since the correlation ma-

trix reflects the same characteristics of the linear systems. Therefore, the POM obtained from the linear per-

turbation model are not good for nonlinear reduced order models.

Also the results from theROMbased on the POMobtained from the snapshots of the response correspond-

ing to sine-sweeps with different upper limit frequencies are shown in Fig. 16. These suggest that the appropri-

ate choice for the frequency range of the sine sweep can make the ROM more efficient. In this case, the
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harmonic excitation frequency is 100 GHz which is below the first natural frequency and a decrease of the

upper limit frequency of the sine sweep can reduce the number of modes necessary in the ROM to satisfy a

given level of accuracy. Thus a prior knowledge of the systemdynamics does help to choose a good set of POM.

The POM used in the previous simulations are generated from the time simulations excited by the sine

sweep with the same amplitude as the harmonic excitation. There is a question arising about this. Can the

POM obtained in one case for one choice of excitation amplitude work for other cases? To answer this,
several sets of POM are created from different amplitude sine-sweeps. Figs. 17(a) and (b) and 18 show

the total rms error vs. number of POM included in ROM with the basis vectors determined from different

amplitude sine-sweep excitations for A = 1 Å, A = 30 Å and A = 50 Å, respectively. The harmonic excita-

tion frequency is again chosen to be 100 GHz. For comparison, the results obtained by the ROM based on

LNM are also plotted. Although the results from different POM vary slightly, the agreement is good com-

pared to the results based on LNM even for large amplitude excitation. Fig. 17(c) and (d) shows the total

rms error vs. number of POM included in ROM with the basis vectors determined from different amplitude

sine-sweep excitations for f = 2 THz and A = 1 Å, A = 5 Å, respectively. Again, it shows POM obtained in
one case can be used in the other case.

Therefore, the POM obtained from one case are valid for a wide range of other cases.

3.3. Results from nonlinear ROM with QSC

In Section 3.1, it is noted that the QSC can improve the linear ROM and make the model more efficient.

In this section, the effects of the QSC on the nonlinear ROM are also studied. The nonlinear reduced order

model with the QSC is described by Eq. (19). All the ROMs used in this section are LNM-based.
Fig. 19 shows the total rms error vs. number of LNM included in the ROMs described by Eqs. (9), (13),

(14) and (19) for different amplitude and different frequency excitations. For nonlinear ROMs, the benefit

of the QSC is not as obvious although it gives a slightly better results in Fig. 19(a) and (c). For high-

frequency excitation, the effect of the QSC is undetectable even when few modes are included in the

ROM (see Fig. 19(b) and (d)).

In Fig. 19(a), the square symbol denotes the results obtained from the ROM based on LNM when using

Taylor series to approximate the potential forces. One purpose of this calculation is to check why there is

such a large difference when the same number of modes are included in the ROM and also why the linear
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results seem much better than the corresponding nonlinear results. Fig. 19(a) shows that the results approx-

imate the linear results when the forces are expanded up to the order of three and the results agree well with

nonlinear ROM when higher order terms are included. This implies that the strong nonlinearity makes the

system quite sensitive.

3.4. Results from nonlinear ROM using POD and CMS

To demonstrate the validity of component modal synthesis described in Section 2.5, a ten-monomer
amylose chain is considered. In this case, the two adjoint substructures are connected through O1–O4 link-

age. Thus there are three constraints for connecting each of the two neighboring substructures. The POM

for each substructure are calculated from an ensemble of data obtained by running the full model simula-

tion. Then the reduced order model is constructed by the procedure described in Section 2.5. In this section,

the harmonic excitation is chosen to have an amplitude of 1 Å and a frequency of 20 GHz.
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Fig. 20 shows the total rms error vs. number of POM included in each substructure for ten substructures.
As expected the error decreases as the number of POM per substructure included in ROM increases.

The total rms error vs. number of substructures for various numbers of total degrees for the assembled

structure is shown in Fig. 21. Note that in the figure N is the total number of degrees of the system before

the component mode synthesis. It is clear that the error increases as the number of substructures increases.

This is explained in part by the fact that the error comes from the geometric compatibility conditions. When

two substructures are joined together, half of the joint degrees of freedom are removed. With a decrease in

the number of substructures, the number of joint degrees of freedom that are removed is smaller compared

to the number of degrees of freedom in the substructure and thus the results become more accurate. Hence,
given a desired accuracy, fewer substructures are expected to give more accurate results if the total number

of degrees of freedom is fixed.

To reduce the model further, one can carry out another POD procedure as described in Section 2.4 after

the ROM using POD and CMS is obtained. For example, Fig. 22 shows the results for the case in which 10

substructures are considered and each substructure includes 30 modes. The symbol * denotes the results

obtained from the POD for the original system. The results obtained by CMS and POD agree well with

the results from the POD for the entire structure.

3.5. Efficiency of reduced order models

The computational cost is proportional to the number of calculations carried out in the simulations. And

the number of calculations in one simulation is
N c ¼ N c1N t;
where Nc1 is the number of calculations each time step and Nt is total number of time steps.
To make the computation more efficient one needs to reduce Nc. More specifically, one needs to decrease

Nc1 or Nt or both. The efficiency of the reduced order models presented in this paper is discussed next.

3.5.1. Linear reduced order models

Comparing Eq. (5) with Eq. (7), when the nonlinear system of equations are linearized, the complex po-

tential force term in Eq. (5) (see Appendix A in [32]) is simply reduced to a matrix–vector multiplication.
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The Hessian matrix is calculated once for all and the computation of matrix–vector is the order of n, where

n is the dimension of the matrix in Eq. (7). Thus Nc1 can be reduced by a factor of 5–10. This number is

obtained by running the program for one monomer under the same condition since the potential forces

are so complicated that it is difficult to count the number of calculations. Also Nc1 can be further reduced

by using modal reduction. Furthermore, the computation can be made more efficient by reducing Nt. Recall

that the integration time step is inversely proportional to highest frequency of the system. The time step can
be made larger since the high frequency modes in the system are truncated in the reduced order models.

Especially for low frequency excitations only a few modes are required and the computation cost can be

reduced by a factor of ten or even one hundred since the highest frequency is much larger than the lowest

frequency. In our case for one monomer the highest natural frequency is almost a thousand times the lowest

frequency.
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3.5.2. Nonlinear reduced order models

Compared to linear reduced order models, the efficiency of nonlinear reduced order model is more mod-

est since the complex potential forces need to be evaluated in both the original system and the reduced order

models. The computational cost using nonlinear reduced order models based on LNM (Eq. (14) and Eq.

(19)) for one monomer using the same time step is shown in Fig. 23 for the case with the excitation of

A = 1 Å and f = 100 GHz. In Fig. 23, it is observed that the computational time for the ROM is usually

larger than the time required by the original system when using the same time step (Note that in the figure

the relative time is defined to be the ratio of the computational time for the ROM to that of the original

system). This is because in the ROM additional time is needed for the matrix–vector multiplication. How-
ever, the computation for the ROM can be reduced by increasing the integration time step as in the linear

case. A dramatic decrease of the number of time steps, Nt, can be expected to speed up the calculation for
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low frequency excitation. It should also be mentioned however, that the time step cannot always be reduced

as much as for the linear case since high harmonic components may exist in the nonlinear response. But for

the amplitude considered here, the time step can still be reduced by a factor of up to a hundred which means

the calculation can be up to one hundred times faster depending on the number of modes included in the

ROM. The additional time and cost for matrix calculation is negligible.

3.5.3. Nonlinear reduced order models using POD and CMS

Comparing Eq. (30) with Eq. (27), it is found that the original physical coordinates have a similar rela-

tionship with the corresponding generalized coordinates except for the transformation matrices. Thus the

governing equations of motion are similar. Therefore, the efficiency of the nonlinear reduced order

models is comparable to that of the nonlinear model using LNM. As an example, Fig. 24 shows the
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relative time vs. the number of modes used in the entire system. In this case, POD is carried out after the

CMS model is built. In the plot the relative time is defined to be the ratio of the computational time for
the original system to that of the ROM. Thus larger relative times are desirable. It is clear the time and

cost can be significantly reduced by a factor of up to 20 by increasing the time step without changing the

accuracy. Also it is noted that as the time step gets larger, the models of lower dimension also have a

higher relative time.
4. Conclusions

A detailed study of modal reduction based on LNM and POM has been carried out in modeling a a-D-
glucopyranose monomer and also a chain of monomers under harmonic AFM base excitation. It has been

demonstrated that the linear reduced order model (ROM) is valid for small amplitude excitation and low

frequency excitation. The nonlinear reduced order model with LNM as the basis vectors is less useful in

modeling the molecules with a strong nonlinearity. Fortunately, the nonlinear reduced order model based

on POM provides a good approximation even for large amplitude or high frequency excitation. It is shown

that the quasi-static correction plays an important role when only few modes are included for the linear

ROMs but has little effect in the nonlinear case. Also it is important to note that the POM obtained in
one case for a given amplitude of excitation is applicable for a wide range of cases.

The reduced order model based on component modal synthesis using POM for each component is also

constructed. Although the POM for each component are calculated from the full model simulation, CMS

makes the eigenvalue problem of the correlation matrix more tractable and more efficient. Since there are

many complicated and large biological molecules in the nature, the combination of CMS and POD may

provide a useful method for modeling their dynamic behavior.

With the reduced order system, the computational time and cost can be significantly reduced by a factor

of ten or even a hundred depending on the external excitations and whether the linear or nonlinear model is
used in the simulation.

Therefore, modal reduction is a possible, effective way to decrease the computational time and cost of a

molecular dynamics simulation.
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